3.2.16 \(\int x (b+2 c x^2) (b x^2+c x^4)^p \, dx\)

Optimal. Leaf size=24 \[ \frac {\left (b x^2+c x^4\right )^{p+1}}{2 (p+1)} \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 24, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {1588} \begin {gather*} \frac {\left (b x^2+c x^4\right )^{p+1}}{2 (p+1)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x*(b + 2*c*x^2)*(b*x^2 + c*x^4)^p,x]

[Out]

(b*x^2 + c*x^4)^(1 + p)/(2*(1 + p))

Rule 1588

Int[(Pp_)*(Qq_)^(m_.), x_Symbol] :> With[{p = Expon[Pp, x], q = Expon[Qq, x]}, Simp[(Coeff[Pp, x, p]*x^(p - q
+ 1)*Qq^(m + 1))/((p + m*q + 1)*Coeff[Qq, x, q]), x] /; NeQ[p + m*q + 1, 0] && EqQ[(p + m*q + 1)*Coeff[Qq, x,
q]*Pp, Coeff[Pp, x, p]*x^(p - q)*((p - q + 1)*Qq + (m + 1)*x*D[Qq, x])]] /; FreeQ[m, x] && PolyQ[Pp, x] && Pol
yQ[Qq, x] && NeQ[m, -1]

Rubi steps

\begin {align*} \int x \left (b+2 c x^2\right ) \left (b x^2+c x^4\right )^p \, dx &=\frac {\left (b x^2+c x^4\right )^{1+p}}{2 (1+p)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.07, size = 97, normalized size = 4.04 \begin {gather*} \frac {x^2 \left (x^2 \left (b+c x^2\right )\right )^p \left (\frac {c x^2}{b}+1\right )^{-p} \left (2 c (p+1) x^2 \, _2F_1\left (-p,p+2;p+3;-\frac {c x^2}{b}\right )+b (p+2) \, _2F_1\left (-p,p+1;p+2;-\frac {c x^2}{b}\right )\right )}{2 (p+1) (p+2)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x*(b + 2*c*x^2)*(b*x^2 + c*x^4)^p,x]

[Out]

(x^2*(x^2*(b + c*x^2))^p*(b*(2 + p)*Hypergeometric2F1[-p, 1 + p, 2 + p, -((c*x^2)/b)] + 2*c*(1 + p)*x^2*Hyperg
eometric2F1[-p, 2 + p, 3 + p, -((c*x^2)/b)]))/(2*(1 + p)*(2 + p)*(1 + (c*x^2)/b)^p)

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.11, size = 0, normalized size = 0.00 \begin {gather*} \int x \left (b+2 c x^2\right ) \left (b x^2+c x^4\right )^p \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[x*(b + 2*c*x^2)*(b*x^2 + c*x^4)^p,x]

[Out]

Defer[IntegrateAlgebraic][x*(b + 2*c*x^2)*(b*x^2 + c*x^4)^p, x]

________________________________________________________________________________________

fricas [A]  time = 0.85, size = 31, normalized size = 1.29 \begin {gather*} \frac {{\left (c x^{4} + b x^{2}\right )} {\left (c x^{4} + b x^{2}\right )}^{p}}{2 \, {\left (p + 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(2*c*x^2+b)*(c*x^4+b*x^2)^p,x, algorithm="fricas")

[Out]

1/2*(c*x^4 + b*x^2)*(c*x^4 + b*x^2)^p/(p + 1)

________________________________________________________________________________________

giac [A]  time = 0.40, size = 22, normalized size = 0.92 \begin {gather*} \frac {{\left (c x^{4} + b x^{2}\right )}^{p + 1}}{2 \, {\left (p + 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(2*c*x^2+b)*(c*x^4+b*x^2)^p,x, algorithm="giac")

[Out]

1/2*(c*x^4 + b*x^2)^(p + 1)/(p + 1)

________________________________________________________________________________________

maple [A]  time = 0.00, size = 31, normalized size = 1.29 \begin {gather*} \frac {\left (c \,x^{2}+b \right ) x^{2} \left (c \,x^{4}+b \,x^{2}\right )^{p}}{2 p +2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(2*c*x^2+b)*(c*x^4+b*x^2)^p,x)

[Out]

1/2*(c*x^2+b)*x^2/(p+1)*(c*x^4+b*x^2)^p

________________________________________________________________________________________

maxima [A]  time = 0.59, size = 35, normalized size = 1.46 \begin {gather*} \frac {{\left (c x^{4} + b x^{2}\right )} e^{\left (p \log \left (c x^{2} + b\right ) + 2 \, p \log \relax (x)\right )}}{2 \, {\left (p + 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(2*c*x^2+b)*(c*x^4+b*x^2)^p,x, algorithm="maxima")

[Out]

1/2*(c*x^4 + b*x^2)*e^(p*log(c*x^2 + b) + 2*p*log(x))/(p + 1)

________________________________________________________________________________________

mupad [B]  time = 2.07, size = 31, normalized size = 1.29 \begin {gather*} \frac {x^2\,\left (c\,x^2+b\right )\,{\left (c\,x^4+b\,x^2\right )}^p}{2\,\left (p+1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(b + 2*c*x^2)*(b*x^2 + c*x^4)^p,x)

[Out]

(x^2*(b + c*x^2)*(b*x^2 + c*x^4)^p)/(2*(p + 1))

________________________________________________________________________________________

sympy [B]  time = 17.12, size = 85, normalized size = 3.54 \begin {gather*} \begin {cases} \frac {b x^{2} \left (b x^{2} + c x^{4}\right )^{p}}{2 p + 2} + \frac {c x^{4} \left (b x^{2} + c x^{4}\right )^{p}}{2 p + 2} & \text {for}\: p \neq -1 \\\log {\relax (x )} + \frac {\log {\left (- i \sqrt {b} \sqrt {\frac {1}{c}} + x \right )}}{2} + \frac {\log {\left (i \sqrt {b} \sqrt {\frac {1}{c}} + x \right )}}{2} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(2*c*x**2+b)*(c*x**4+b*x**2)**p,x)

[Out]

Piecewise((b*x**2*(b*x**2 + c*x**4)**p/(2*p + 2) + c*x**4*(b*x**2 + c*x**4)**p/(2*p + 2), Ne(p, -1)), (log(x)
+ log(-I*sqrt(b)*sqrt(1/c) + x)/2 + log(I*sqrt(b)*sqrt(1/c) + x)/2, True))

________________________________________________________________________________________